Dental robotic testing simulator invented

A dental robotic testing simulator has been invented to replicate human chewing in order to test dental materials.

Dr Kazem Alemzadeh in the bio-engineering research group of Bristol University’s Department of Mechanical Engineering has invented the Dental Robotic Testing Simulator, called ‘Dento-Munch’.

The design inspiration behind Dento-Munch was based on a human skull (structure), a spider (general look) and an aircraft simulator (dynamics and control of chewing).

The UK spends £2.5 billion each year on dental materials to replace or strengthen teeth, but despite the frequent use of metals, polymers and ceramics for tooth replacement or restoration, their properties – strength, hardness, wear and fatigue – are often poorly understood. Without this knowledge, the likely long-term performance of such materials cannot be assessed. While randomised clinical trials can test such materials, they are time-consuming and expensive, and by the time a new material has been evaluated, the market has often moved on. Laboratory simulators do exist, but they too have their problems in that they do not truly represent human chewing, so results from different simulators are often inconsistent. This lack of an adequate method of testing is hindering the development of dental materials.

The temporomandibular joint (TMJ) is arguably the most complex set of joints in the human body. It connects the lower jaw – the mandible – to the temporal bone at the side of the head. If you place your fingers just in front of your ears and open your mouth, you can feel the joint move on each side of your head. Because these joints are flexible, the jaw can move smoothly up and down and side to side, enabling us to chew our food, talk and yawn. In humans, the TMJ joint and the high versatility of our muscles enable the jaw to move with ‘six degrees of freedom’. It is therefore important that simulators can reproduce this same amount of ‘freedom’.

Given the space constraints of Dento-Munch, the muscles of the TMJ had to be placed outside the skull and are represented by mechanisms that introduce motion. This is similar to the design of an aircraft simulator. However, despite looking nothing like a human jaw, the lower platform on Dento-Munch plays the part of the lower jaw and is capable of moving in six degrees of freedom, due to the platform’s sophisticated controls. It therefore accurately mimics the chewing motion and forces in human jaws. It will soon be loaded with copies of real human teeth in order to test how implants, replacement or restored teeth might wear during use.

Favorite
Get the most out of your membership by subscribing to Dentistry CPD
  • Access 600+ hours of verified CPD courses
  • Includes all GDC recommended topics
  • Powerful CPD tracking tools included
Register for webinar
Share
Add to calendar